A PHD12–Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition

نویسندگان

  • Pablo H. Strobl-Mazzulla
  • Marianne E. Bronner
چکیده

Neural crest cells form within the neural tube and then undergo an epithelial to mesenchymal transition (EMT) to initiate migration to distant locations. The transcriptional repressor Snail2 has been implicated in neural crest EMT via an as of yet unknown mechanism. We report that the adaptor protein PHD12 is highly expressed before neural crest EMT. At cranial levels, loss of PHD12 phenocopies Snail2 knockdown, preventing transcriptional shutdown of the adhesion molecule Cad6b (Cadherin6b), thereby inhibiting neural crest emigration. Although not directly binding to each other, PHD12 and Snail2 both directly interact with Sin3A in vivo, which in turn complexes with histone deacetylase (HDAC). Chromatin immunoprecipitation revealed that PHD12 is recruited to the Cad6b promoter during neural crest EMT. Consistent with this, lysines on histone 3 at the Cad6b promoter are hyperacetylated before neural crest emigration, correlating with active transcription, but deacetylated during EMT, reflecting the repressive state. Knockdown of either PHD12 or Snail2 prevents Cad6b promoter deacetylation. Collectively, the results show that PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2, forming a complex at the Cad6b promoter and thus revealing the nature of the in vivo Snail repressive complex that regulates neural crest EMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest.

The neural crest, a transient population of migratory cells, forms the craniofacial skeleton and peripheral nervous system, among other derivatives in vertebrate embryos. The transcriptional repressor Snail2 is thought to be crucial for the epithelial-to-mesenchymal transition (EMT) that promotes neural crest delamination from the neural tube; however, little is known about its downstream targe...

متن کامل

Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation

During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase gene...

متن کامل

Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development.

In neural crest formation, transcription factors, such as group E Sox and Snail1/Snail2 (Slug) regulate subsequent epithelial-mesenchymal transition (EMT) and migration. In particular, Sox9 has a strong effect on neural crest formation, EMT and differentiation of crest-derived cartilages in the cranium. It remains unclear, however, how Sox9 functions in these events, and how Sox9 activity is re...

متن کامل

Dev111997 722..731

Neural crest cells arise from the border of the neural plate and epidermal ectoderm,migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Althoughmuch has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this ...

متن کامل

LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells.

Neuroblastoma is an embryonic tumor derived from cells of the neural crest. Taking advantage of a newly developed neural crest lineage tracer and based on the hypothesis that the molecular mechanisms that mediate neural crest delamination are also likely to be involved in the spread of neuroblastoma, we were able to identify genes that are active both in neural crest development and neuroblasto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2012